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• We develop blended filtering methods that exploit the structure of dynamical systems.
• Non-Gaussian features are captured adaptively in a subspace through particle methods.
• The remaining parts of the phase space are amended by conditional Gaussian mixtures.
• The performance of the blended algorithms is compared in various dynamical regimes.
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a b s t r a c t

It is a major challenge throughout science and engineering to improve uncertain model predictions
by utilizing noisy data sets from nature. Hybrid methods combining the advantages of traditional
particle filters and the Kalman filter offer a promising direction for filtering or data assimilation in
high dimensional turbulent dynamical systems. In this paper, blended particle filtering methods that
exploit the physical structure of turbulent dynamical systems are developed. Non-Gaussian features of
the dynamical system are captured adaptively in an evolving-in-time low dimensional subspace through
particle methods, while at the same time statistics in the remaining portion of the phase space are
amended by conditional Gaussian mixtures interacting with the particles. The importance of both using
the adaptively evolving subspace and introducing conditional Gaussian statistics in the orthogonal part
is illustrated here by simple examples. For practical implementation of the algorithms, finding the most
probable distributions that characterize the statistics in the phase space as well as effective resampling
strategies is discussed to handle realizability and stability issues. To test the performance of the blended
algorithms, the forty dimensional Lorenz 96 system is utilized with a five dimensional subspace to run
particles. The filters are tested extensively in various turbulent regimes with distinct statistics and with
changing observation time frequency and both dense and sparse spatial observations. In real applications
perfect dynamical models are always inaccessible considering the complexities in both modeling and
computation of high dimensional turbulent system. The effects of model errors from imperfect modeling
of the systems are also checked for thesemethods. The blendedmethods showuniformly high skill in both
capturing non-Gaussian statistics and achieving accurate filtering results in various dynamical regimes
with and without model errors.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Accurate predictions of the future states of high-dimensional
turbulent dynamical systems are a formidable problem with sig-
nificant practical impact in a wide range of areas throughout
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science and engineering. Filtering or data assimilation refers to
the process of obtaining the best estimation of a natural sys-
tem by combining uncertain model predictions with noisy obser-
vations of the true signal from nature. Examples for important
contemporary applications involve the real time filtering and pre-
diction of weather and climate systems as well as the spread
of hazardous plumes and pollutants or the prediction of storm
surges in environmental science and engineering. These turbulent
dynamical systems always include a large number of active de-
grees of freedom under various kinds of nonlinear non-Gaussian
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scenarios even with an irreducible high dimensional attractor in
phase space. Considering the complexity of these systems, model
errors in the approximation models are always unavoidable due
to both the imperfect understanding of the real nature systems
and the limited computational ability at hand. Thus an important
emerging scientific issue is the development of statistically accu-
rate filtering methods through models with high skill in capturing
both Gaussian and non-Gaussian features aswell as being robust to
external perturbations and imperfect prior estimates from model
errors for filtering turbulent dynamical systems.

The complexity of the turbulent dynamical systems makes it
impossible to evaluate the distributions of state variables analyt-
ically in explicit form for most situations. To approximate the fil-
ter distributions computationally instead, particle filters based on
Monte-Carlo simulations are a popular class of numerical methods
in characterizing the nonlinear non-Gaussian structures of low-
dimensional systems [1,2]. Compared with the standard Kalman
filteringmethods [3], the principal advantage of the particle meth-
ods is that they do not rely on any local linearization of the models
and in principle can get the entire statistical information about any
higher order moments with large enough ensemble size. However
the price thatmust be paid for these advantages of higher accuracy
is the high computational expense required to evolve and update
the entire ensemble of particles. Especially, as the dimensionality
of the system increases, the required ensemble size that is suffi-
cient for describing the full statistics in the phase space increases
exponentially and becomes computationally impossible even with
moderate dimensionality about order of 100. Insufficient ensemble
size will end up with frequent particle collapse even with proper
resampling strategies [4,5].

To avoid this curse of dimensionality for particle methods, a
number of ensemble based Kalman filters [6–9] are developed,
which use an ensemble of particles to estimate the mean and
covariance only and then apply Kalman filter instead in the analysis
step. These ensemble Kalman filtering methods show promising
results for some high dimensional nonlinear systems, for example
in synoptic scale midlatitude weather dynamics, with careful
choices of inflation and localization parameters for the particles.
But still with only Gaussian statistics of the particles exploited in
the analysis step, these methods are implicitly Gaussian and are
sensitive to model resolution and different kinds of observations,
and model parameters need to be changed according to different
dynamical regimes. For another direction, reduced order filtering
strategies [10–13] and Bayesian hierarchical modeling methods
[14] have been developed trying to apply particles in a sufficiently
lowdimensional subspace. One ideamight be that only considering
the subspace which contains most of the energy in the system is
sufficient to obtain desirable filtering performance. One strategy
related to this idea is to filter the solution in an evolving
low-dimensional subspace which captures the leading variances
adaptively while ignoring the remaining degrees of freedom [15].
Whereas it turned out that the ignored degrees of freedomcould be
crucial in the model prediction skills. Simple examples with non-
normal linear systems [16] demonstrate the limited skill of such
an approach for reduced filtering methods in general as shown
here in Section 2.2.1. Despite the difficulties in both the Kalman
filter based Gaussian methods and the reduced order particle
strategies, these two approaches with distinct features both have
some advantages in achieving promising filtering performance
and are often complementary with each other. Ideas about hybrid
methods [17,18] have been developed and showpromising results.

This paper builds on the mathematical framework described in
[19] to develop new blended particle filtering methods for chaotic
dynamical systems. The idea is a hybrid method combining the
merits of the adaptive reduced ordermethod aswell as conditional
Gaussian mixtures in which Kalman filter update formulas can be
applied in the analysis step. The large dimensional phase space is
decomposed into two subspaces. The particle filter is applied in
one subspace low dimensional enough for accuracy and efficiency
and evolving adaptively in time for capturing the directions with
principal variances. On the other hand, the information in the high
dimensional orthogonal subspace is corrected by a conditional
Gaussian mixture representation where Kalman filter updates
can be used with efficiency. The adaptive space decomposition
required in this framework for the forecast model is achieved here
with the help of recently developed statistically accurate models
[16,20,21] in this paper, while the general framework is more
flexible and need not be limited to these forecast models only.
See [22,23] for another application of the blended filtering ideas
using multi-scale forecast models with superparameterization.
Two essential aspects concerning different statistics in the two
separate subspaces are highlighted here for the effectiveness
of this method. The low dimensional subspace with particle
filters used to resolve full statistics needs to evolve adaptively
in time in order to keep tracking the most energetic directions
of the system with largest variances; while the statistics in the
orthogonal subspace with conditional Gaussian mixtures applied
are nevertheless important and should never be neglected. The
importance of these two aspects can be illustrated by simple test
models. The choice for the Gaussian distributions in the orthogonal
subspace is guided by information theory and can be approximated
by solving a linear system conditional on particle values in the
other subspace. The efficiency of the method is guaranteed by
a universal form of the prior conditional covariance matrix to
which the Kalman filter update is applied, requiring only one time
calculation of the large scale Kalman gain matrix. In addition,
to avoid particle degeneration while maintaining the minimum
amount of noise added in the resampling step, an adaptive inflation
is introduced to the resampled particles which has potential to
further stabilize the scheme. In [19], we have checked the blended
filters in several difficult regimes using the Lorenz-96 systemwith
no model error included. Here, a more extensive discussion about
the performances of these methods is carried out in both Gaussian
and non-Gaussian regimes of the same system with various kinds
of observation networks. Furthermore, the effects of model error
are checked by introducing imperfect external forcing term in this
system. It could make the problem much more challenging due to
the distinct statistical dynamics between the perfect model and
the imperfect model with error. The ability of these methods to
capture significant non-Gaussian features with imperfect model is
demonstrated below in Section 4.

In the following part of this paper, in Section 2, the general ideas
and basic framework for the blended particle filtering algorithms
will be described. We illustrate the importance of the two
indispensable parts of this method with several simple examples
in Section 2. Section 3 describes the detailed strategies for finding
the conditional Gaussian distribution and the resampling tricks,
which are essential to the realizability and stability of these hybrid
filtering schemes. Various tests of thesemethods using the Lorenz-
96 system are reported in Section 4 for models with or without
model errors including the capability of the methods to capture
non-Gaussian features.We finish in Section 5with a brief summary
and a discussion about the future directions.

2. Algorithms for blended particle filtering

The blended particle filtering algorithms exploit the physical
structure of turbulent dynamical systems and capture non-
Gaussian features in an adaptively evolving low dimensional
subspace through particles interacting with evolving Gaussian
statistics on the remaining portion of phase space. This framework
is set to be flexible so that any proper forecast models with
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blended reduced order subspaces or multi-scale structure can be
incorporated. Another application of these ideas for multiscale
filtering algorithms can be found in [23,22]. As shown in the
following subsections, the algorithms consist of two indispensable
parts: (i) an adaptively evolving subspace capturing the principal
directions of the system; (ii) a conditional Gaussian mixture
representation in the high-dimensional orthogonal subspace. To
illustrate the importance of these two features, a simple 2 × 2
non-normal linear system and then the more complex Lorenz-96
system will be applied to emphasize that ignoring either of these
two essential parts will end up with large filtering error or even
filter divergence.

2.1. General framework for the blended particle filtering methods

Here we consider real time filtering or data assimilation
algorithms for a state vector u (t) ∈ RN , evaluated at discrete
time steps t ∈ N+, from a turbulent dynamical system. The aim
is to estimate the state variables recursively in time by a posterior
distribution denoted as p+ (ut) ≡ p (ut |v1:t), by combining the
information from model forecasts and the observations v ∈

RM ,M ≤ N , up to time t . Generally this process can be
achieved by two recursive steps. At one time instant t , first some
Markov predictionmodel for the dynamical systemwith transition
equation p (ut |ut−1) is used to get the prior distribution

p− (ut) ≡ p (ut |v1:t−1) =


p (ut |ut−1) p (ut−1|v1:t−1) dut−1; (1)

second, the posterior distribution is achieved by incorporating the
observation data with the model forecasts with the help of the
Bayesian formula

p+ (ut) ≡ p (ut |v1:t) =
p (v1:t |ut) p− (ut)
p (v1:t |ut) p− (ut) dut

. (2)

In the case of filtering high dimensional turbulent dynamical
systems, challenges exist in both the forecast step (1) and the
analysis step (2). In the forecast part, the task is to find a proper
uncertainty quantification (UQ) method to estimate the transition
equation for p (ut |ut−1). It is always computational forbidden to
fully resolve all the degrees of freedom of the system whereas
high order statistics could play crucial roles for systems with
nonlinearities in accurate prediction of the state variables. Thus it
is reasonable to seek ideas about reduced order blended methods
considering two separate subspaces with important higher order
statistics captured fully in a low dimensional subspace with
efficiency. With the model predictions in two separate subspaces
achieved, the difficulty in the analysis step is to find a statistically
consistent way to incorporate the observation data, which in
general is a mixture of the two subspaces, into the model prior
forecasts so different filtering strategies can be applied to these
two subspaces considering their different statistical structure. First
the mathematical foundations for blending model forecasts and
observation data in the analysis stepwill be described, then several
effective prediction models developed recently [16,20,21] will be
proposed to be applied to the mathematical framework as the
forecast models. For simplicity in representation, we will neglect
the subscript t in the remainder of the paper.

2.1.1. Analysis step
For the blended methods, the state variable u is decomposed

into two adaptively evolving subspaces u = (u1,u2) ,uj ∈

RNj ,N1 + N2 = N , with the property that N1 is low dimensional
enough so that the statistics of u1 can be calculated from a particle
filter while the statistics of u2 are assumed to be conditional Gaus-
sian given u1. The u1 subspace is then described by an ensemble
of particles with values and weights in

u1,j, pj


, and the u2 sub-

space is described by a Gaussianmixture distribution N

ū2,j, R2,j


with mean and covariance matrix conditional on the values in u1
subspace (one practical way to estimate the conditional mean and
covariance will be discussed in the next section). Therefore given a
proper forecastmodel and the decomposition described above, the
prior forecast density at any analysis time stepm∆t is given by

p− (u) = p− (u1) pG− (u2|u1)

=

Q
j=1

pj,−δ

u1 − u1,j


N

u2|ū−

2,j, R
−

2,j


, (3)

where the marginal distribution p− (u1) is approximated by
Q -particles with importance weight, pj,−, while the distribution
in the orthogonal subspace pG

−
(u2|u1) is assumed to be Gaussian

given values of u1 (one derivation using information theory and
max-entropy principle is demonstrated in the next section show-
ing this Gaussian assumption about the variables in the u2 sub-
space is appropriate). Introduce observations at the analysis time,
m∆t , in the form

v = G (u) + σ0 = G0 (u1) + G1 (u1)u2 + σ0, (4)

where G1 (u1) has rank M and the observation noise, σ0, is Gaus-
sian σ0 ∼ N (0, R0). This can be viewed as a first order expansion
of the mixed observation operator G (u1,u2) around the value of
u1 and of course, any linear observation operator has this form.

The task now is to find a way to filter the variables
u1,u2 separately in the two subspaces due to their different
representations. Given each particle value u1,j in the u1 subspace,
we can define new observations conditional on each particle value
as v′

2,j = G1

u1,j

u2 + σ0, with v′

2,j = v − G0

u1,j

. Since

we have Gaussian observation noise σ0 and conditional Gaussian
distribution for u2 in the subspace, a Kalman filter update can be
applied for variables u2 with corresponding observations v′

2 by
using Bayesian formula in this subspace. On the other hand for
variables u1,j with particle representations in the u1 subspace, it
is natural to apply particle filter to them. But a new likelihood
function restrained in the u1 subspace should be calculated to get
the weight updating factor Ij for each particle weight pj. In fact,
by combining (3) and (4) into the analysis step equation (2) it
can be shown by applying the Bayesian formula that the posterior
distribution after the analysis step is also a blended particle filter
conditional Gaussian distribution [19, see], i.e. there are explicit
formulas for the updated weights, pj,+, 1 ≤ j ≤ Q , conditional
mean, ū+

2,j, and covariance, R+

2,j, so that

p+ (u) =

Q
j=1

pj,+δ

u1 − u1,j


N

u2|ū+

2,j, R
+

2,j


. (5)

Below, we will use ‘−’ to represent prior values and ‘+’ for
posterior values. The posterior particle weights can be updated
as pj,+ ∝ pj,−Ij, with Ij ∝


p

v|u1,j,u2


N

u2|ū−

2,j, R
−

2,j


du2

measuring the accuracy of the particle values in the subspace
by comparing with the observations, which can be expressed
in an explicit form with Gaussian noise in observation. The
posterior distributionsN


u2|ū+

2,j, R
+

2,j


in the orthogonal subspace

are updated by suitable Kalman filter formulas with the mean
update for ū+

2,j depending nonlinearly on u1,j in general (check
the explicit formulas for both particle filter and Kalman filter in
the algorithm below). The details of this derivation and explicit
formulas can be found in [19].

Specifically, by choosing proper blended forecast model sat-
isfying the requirements in (3), after the forecast step, we get
the predicted values for the mean states ū and the full state co-
variance matrix R, together with a particle representation in the
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low dimensional subspace u1 through dynamical basis E (t) =

{e1 (t) , . . . , es (t)} evolving in time, with dimensionality s =

N1 ≪ N ,

u (t) = ū (t) +

s
j=1

u′

1,j (t; ω) ej (t) , (6)

where

ej (t)

s
j=1 is the subdimensional dynamical basis, and


u′

1,j


are the corresponding stochastic coefficients computed through
Monte-Carlo simulation. The particle statistics represented by the
statistical coefficients u′

1,j must be consistent with the covariance
matrix R, and u′

1,i, u
′

1,j are normalized to be independent with each
other, that is
u′

1,iu
′∗

1,j


= ei · Rejδij, 1 ≤ i, j ≤ s.

In the following analysis step, define the projection operator PPT

calculated by completing the dynamical basis P =

E, E⊥


, and

project the mean and covariance to the two subspaces spanned
by E and E⊥. At the initial time, t = 0, each particle is equally
weighted as


u′

1,i, pi


=


u′

1,i,
1
Q


. The general algorithm for the

analysis step is sketched in two parts.
Algorithm. Blended filtering method (analysis step)

• Part I
– Project the forecast mean and covariance matrix to the two

subspaces
ū−

1
ū−

2


= PTū−, Rt = PTRP =


R1 R12

RT
12 R2


. (7)

– Calculate the conditionalmean ū−

2,j, consistentwith themean
ū−

2 and cross-covariance R12, in the orthogonal subspace
pG

−


u2|u1,j


= N


ū−

2,j, R
−

2


with dependence on the values

of the particles u1,j.
– Calculate the conditional covariance R−

2 in the u2 subspace
determined by subtracting the variances of the conditional
mean ū−

2,j from the original prior covariance matrix R2

(denote u′

1 = u1 − ⟨u1⟩ , ū′

2 (u1) = ū2 (u1) − ⟨u2⟩ as the
fluctuations about themean, and details about this correction
will be discussed in the next section):
R−

2 = R2 −


j

ū′

2,j ⊗ ū′

2,jpj,−. (8)

• Part II
– Use Kalman filter updates in the u2 subspace

ū+

2,j = ū−

2,j + K

v − GEu−

1,j − GE⊥ū−

2,j


, (9a)

R̃+

2 =

I − KGE⊥


R−

2 , (9b)

K = R−

2


GE⊥

T 
GE⊥R−

2


GE⊥

T
+ R0

−1
, (9c)

with the (linear) observation operator G (u1,u2) = GEu1 +

GE⊥u2, where R0 is the covariance matrix for the observation
noise.

– Update the particle weights in the u1 subspace by pj,+ ∝

pj,−Ij, with

Ij = exp

1
2


ū+T
2,j R

+−1
2 ū+

2,j − ū−T
2,j R

−−1
2 ū−

2,j

−

v − GEu−

1,j

T R−1
0


v − GEu−

1,j


. (10)

– Normalize the weights pj,+ =
pj,−Ij
j pj,−Ij

and apply resampling.
– Get the posterior mean and covariance matrix from the

posterior particle presentation
ū+

1 =


j

u1,jpj,+, ū+

2 =


j

ū+

2,jpj,+, (11a)
and
R+

1,ij =


k

u′

1i,ku
′∗

1j,kpk,+, 1 ≤ i, j ≤ s, (11b)

R+

12,ij =


k

u′

1i,kū
′∗

2j,kpk,+,

1 ≤ i ≤ s, s + 1 ≤ j ≤ N, (11c)

R+

2 = R̃+

2 +


j

ū′

2,j ⊗ ū′

2,jpj,+. (11d)

– Rotate the stochastic coefficients and basis to principal
directions in the s-dimensional stochastic subspace.

Remark. In the algorithm above, part I serves as the pre-
calculations for the predicted prior variables in the two subspaces.
Note that the particle values in the u1 subspace can be simply
achieved through a Monte-Carlo simulation for the stochastic
coefficients under the basis, whereas the conditional Gaussian
mean and covariancematrix in the orthogonalu2 subspacemust be
chosen to be consistent with the prior mean and cross-covariance
ū−

2 , R12. We will discuss the principle in getting this conditional
mean and covariance in detail in Section 3. Part II of the algorithm
carries out filtering methods (particle filter in u1 and Kalman filter
update in u2) separately in the two subspaces and combines them
together in the end to get the initial values for next time step. Since
the particle filter is only carried out in a low-dimensional reduced
order subspace u1, the computational cost can be controlled and
high order statistics are obtained inside this subspace. On the
other hand, the orthogonal subspace u2 is represented by a set
of Gaussian mixtures where all the conditional means ū2,j share
the same conditional covariance R−

2 in (8). Thus only one Kalman
gain matrix K as in (9c) needs to be calculated to update mean and
covariance via Kalman filter in the high dimensional orthogonal
subspace. In this way, the computational cost in u2 subspace is also
affordable at least for moderate size turbulent dynamical systems
with order of hundreds of degrees of freedom.

It also needs to be mentioned that the formulation described
above is similar to the Rao–Blackwellisation for sequential
importance sampling described in [24,2]. Previous formulations
of the hybrid ideas with Gaussian mixtures include [17,18,25].
However, there is a crucial difference that here conditional
Gaussianmixtures are applied in the reduced subspace u2 blended
with particle filter approximations only in the lower-dimensional
subspace, u1, unlike the previous work. A realizable efficient way
to marginalize the state variables into two subspaces and for
judicious quantification for the uncertainties in each subspace as
well as proper resampling strategies to avoid particle collapse
are crucial for filter performance. These issues will be extensively
discussed in the following sections.

2.1.2. Forecast step
The framework of the algorithm described above leaves us with

extra freedom to choose from admissible forecast models and
proper space decomposition strategies, which makes the scheme
quite flexible to be hybridized with various other methods. While
the above formulation can be applied to hybrid particle filters with
conditional Kalman filters on fixed subspaces, a more attractive
idea is to utilize statistical forecast models that adaptively change
these subspaces as time evolves in response to the uncertainty
without a separation of time scales. Among the favorable choices of
forecast models, there include the nonlinear statistical dynamical
models (QG-DO or MQG-DO) developed recently in [16,20,21]
which have been proved to have significant skill for uncertainty
quantification for turbulent dynamical systems. Here we describe
the ideas in these methods briefly using the abstract form of
turbulent dynamical systems with quadratic nonlinearity

ut = Lu + B (u,u) + F, (12)
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where B (u,u) represents quadratic nonlinear interactions which
conserves energy u · B (u,u) = 0. The structure (12) for
turbulent dynamical systems can be found in many applications
in geosciences and other areas [26–29].

The idea for solving this system is to derive statistically
accurate closed forms for the dynamics of each order of moments
(most importantly, the mean and covariance matrix) for the state
variables u. Taking the same decomposition of state variables into
mean and fluctuation sums as in (6) in a s-dimensional phase
space Vs = span {e1, e2, . . . , es} (with s = N as the fully spatial
decomposition and s < N as the reduced order decomposition in
a subspace),

u (t) = ū (t) +

s
j=1

u′

j (t; ω) ej (t) ,

the dynamical equations for the mean ū and covariance matrix
Rij =


u′

iu
′∗

j


can be derived by substituting the decomposition

into the original system (12) and taking expectations for the
corresponding parts, therefore

dū
dt

= Lū + B (ū, ū) +


i,j

RijB

ei, ej


+ F, (13a)

dR
dt

= LvR + RL∗

v + QF . (13b)

It can be noticed that the dynamics for the mean (13a) is related
with the second order moments R, and the dynamics for the
covariance (13b) involves the term

QF ,ij =


m,n


u′

mu
′

nu
′

j


B (em, en) · ei +


u′

mu
′

nu
′

i


B (em, en) · ej,

representing third order interactions

u′

iu
′

ju
′

k


between modes

as well as a linear interaction part represented by Lv,ij =
Lej + B


ū, ej


+ B


ej, ū


·ei. The dynamical equations (13a) and

(13b) are still not a closed form since we still need to calculate the
third order moments


u′

iu
′

ju
′

k


, which will be further related with

higher ordermoments and become expensive to calculatewith the
high dimensionality of the system. So the key issue here is to find
statistically accurate closure methods to approximate these third
order interactions in QF .

The general idea of calculating QF is to run one ensemble of
particles for the stochastic coefficients u′

j (t; ω) in each direction
ej (t) and then to estimate the third order moments by ensemble
means. Considering computational efficiency and accuracy, the
particle method is only run in a reduced order subspace spanned
by {e1, . . . , es}with s ≪ N , while the partial basis ej (t) adaptively
evolves in time to capture the most important directions of the
system according to the Dynamical Orthogonality (DO) criterion
[30]. The coefficient equations are obtained by a direct Galerkin
projection to the DO modes

du′

j

dt
=


m

u′

m [Lem + B (ū, em) + B (em, ū)] · ej

+


m,n


u′

mu
′

n − Cmn

B (em, en) · ej, (14)

with Cmn =

u′
mu

′∗
n


. The dynamical modes evolve according

to the equation obtained by stochastic projection of the original
equations to the DO coefficients

dej
dt

= Mj −

m

em

Mj · em


, (15)

with

Mj = Lej + B

ū, ej


+ B


ej, ū


+


m,n,k

B (em, en)

u′

mu
′

nu
′

k


C−1
jk .
Although effective in some regimes of weak chaos, this DO clo-
sure method by neglecting modes outside the resolved subspace
may introduce serious errors in the prediction results. See [16,21]
for explicit examples demonstrating this for prediction and Sec-
tion 2.2.1 for filtering. So more careful calibration using steady
state statistics are considered to further improve the model pre-
diction skill. These are the ideas in papers [16,20] for blending the
DO method and quasi-linear Gaussian closures. In the numerical
tests in this paper, we will focus on four different kinds of closure
models listed as follows:

• Quasi-Gaussian (QG) closure filter: only Gaussian features will
be considered in this closuremodel with higher ordermoments
simply neglected, that is, set Q QG

F = 0 in (13b) with s = N . This
is the classical Gaussian closure [31];

• Modified quasi-Gaussian (MQG) closure filter: this closure
method also only calculates the Gaussian features at each time
instant but corrects the error from higher order moments
using steady state statistics, which can be achieved in advance.
Specifically, the steady state third order moments are used to
calculate climatology QF ,∞ independent of time in an efficient
fashion. Then in the covariance equation (13b), the nonlinear
interaction term QF is replaced by QMQG

F = Q+

F (R) + Q−

F (R),
with the first part Q+

F from the positive definite part of QF ,∞

as additional noise while the second term Q−

F from the semi-
negative definite part of QF ,∞ as additional damping. See
detailed formulas for this method in [21];

• Blended QG-DO filter: this method tries to track the most im-
portant third order statistics at each time instant using the dy-
namical basis as described above. Instead of calculating all the
third order moments in the entire high dimensional space, we
take a subspace with dimensionality s ≪ N small enough so
that the third order statistics can be achieved efficiently with
accuracy in this subspace. Thus the nonlinear interaction term
Q QGDO
F = Q Vs

F is approximated by statistics only in the small
subspace Vs with interactions involvingmodes outside this sub-
space neglected as in the QG closure method. Another crucial
feature of this method is that the subspace basis ei (t) is de-
signed to evolve adaptively in time according to the DO crite-
rion [30]. Explicit dynamics for the dynamical basis ei as well as
the corresponding coefficient u′

i can be calculated according to
this DO criterion as in (14) and (15). This DO criterion helps the
resolved subspace to keep tracking the most important direc-
tions (that is, directions with largest variances) of the system.
Exchange of statistical information between the evolving sub-
space with non-Gaussian statistics and the evolving Gaussian
statistical background is also allowed in this method. See de-
tailed formulas and explanation for this method in [16];

• Blended MQG-DO filter: this method also uses the higher order
moments calculated in the adaptive reduced order subspace Vs
as in the QG-DOmethod, but in addition to that, the unresolved
higher order statistics in the orthogonal subspace is further cor-
rected using the steady state information as in theMQG closure.
Therefore, the nonlinear interaction term QF in this method is a
more detailed calibration about the higher order statistics con-
sidering both exact third order statistics in the reduced sub-
space Q QGDO

F at each time instant as well as the correction from
steady state information QMQG

F for the unresolved part. The fi-
nal term becomes QMQGDO

F = Q QGDO
F + QMQG

F − Q Vs
F ,∞, with the

overlapped part Q Vs
F ,∞ subtracted. See detailed formulas and ex-

planation for this method in [20].

Above we just simply introduced the basic ideas about these fore-
cast models. The blended models (QG-DO and MQG-DO) naturally
decompose the system into two subspaces with required repre-
sentations consistent with themathematical framework described
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in Section 2.1.1. Note that the first two forecast models (QG and
MQG) only give quasi-Gaussian predictions for the mean and co-
variancematrix, thus no particle representation is needed and only
the Kalman filter update for themean and covariance is carried out
in the analysis step. These can be viewed as special cases of the
QG-DO filter or MQG-DO filter with the dimensionality of the par-
ticle filter subspace u1 set to be zero (s = 0). But as we will see
in the numerical experiments in Section 4, the MQG Gaussian clo-
sure methods can also achieve desirable filtering performance in
some dynamical regimes and are more computationally efficient
than the blended particle methods although they have less capa-
bility in capturing non-Gaussian features. While at the same time,
QG closure method is less feasible because too much information
about higher order moments is neglected which is crucial for the
success of bothmodel prediction and filtering of non-Gaussian fea-
tures.

Remark. The dimensionality of the DO subspace s has been dis-
cussed in [20] for uncertainty quantification schemes. The estima-
tion of the subspace dimensionality s can be made a priori using
steady-state statistics of the dynamical system. It needs to be em-
phasized here that for the filtering methods s does not need to be
as large as the dimensionality of the attractor (or the number of
unstable directions) thanks to the Kalman filter updates in the or-
thogonal subspace. In the numerical tests in the following sections,
we empirically choose s = 5, which ismuch smaller than the num-
ber of positive Lyapunov coefficients of the system.

2.2. Importance of the orthogonal subspace statistics and the
adaptively evolving basis

In the algorithms described above, two essential strategies
must be noted to guarantee the effectiveness of these methods.
First, besides the full statistics in the low dimensional subspace
u1, the statistics in the high dimensional orthogonal subspace u2
are also taken into account with a conditional Gaussian mixture
representation. Second, for the low dimensional subspace u1,
rather than using fixed-in-time basis, the subspace is made to
evolve in time in order to keep tracking the most energetic
directions of the phase space inside the system. It should be
emphasized that both strategies are indispensable parts of the
algorithms for successfully filtering turbulent dynamical systems.
By ignoring the high dimensional orthogonal subspace, even with
the first several most important EOFmodes (that is, eigenfunctions
with the largest eigenvalues for the evolving covariance matrix of
the state variables) accurately captured inside a low dimensional
subspace, it is still not sufficient to get accurate predictions about
the state variables of the system due to the large amount of energy
contained inside this orthogonal subspace or the strong nonlinear
energy transfers between the resolved most energetic modes and
unresolved less energetic ones. On the other hand for the reduced
order subspace, a particle method is applied to try to capture the
important higher order statistics. With fixed-in-time basis, the
most important statistics will be missed at times as the statistics
of the system evolve in time. Next we will show the importance of
these two issues using simple examples.

The first test model is an extremely simple 2 × 2 linear system
with non-normal dynamics [32,16]. Consider a two dimensional
variables x = (x, y)T with the dynamics of x being a deterministic
process while stochasticity is introduced in the variable y so that

dx = Axdt + ΣdWt =


−a ϵ1
ϵ2 −b


xdt +


0 0
0 σ


dWt , (16)

with dWt white noise. We test the performance of this system in
the non-normal regime where the two eigenvectors of the linear
coefficient matrix A above in (16) cannot be orthogonal to each
other by setting the parameters as ϵ1 ≫ 1, ϵ2 = 0. As we will
see in the examples below, despite the simplicity of this model, it
is already sufficient to show the importance of the statistics in the
orthogonal subspace. In Appendix A, all the exact solutions for this
system and the corresponding equations for dynamical basis and
stochastic coefficients are calculated explicitly.

Then a more complex Lorenz-96 (L-96) system [33,34] is used
as the major test model for these methods. The L-96 system is a
40-dimensional dynamical system with u =


u0, u1, . . . , uJ−1

T
duj

dt
=

uj+1 − uj−2


uj−1 − d (t) uj + F (t) ,

j = 0, 1, . . . , J − 1, J = 40. (17)

By changing the amplitude of the external forcing F , the system
shows a wide range of different dynamical regimes ranging from
weakly chaotic, strongly chaotic, to finally full turbulence with
various statistics, which makes it a desirable test model [26]. The
dynamics and statistics of the L-96 system in the different regimes
with F = 5, 6, 8 utilized here are listed in Appendix B.

To measure the filtering ability of different methods, we use
the root mean square error (RMSE) and cross-correlation (XC, or
pattern correlation) between the filtered posterior mean from the
model and the truth. The formulas for RMSE and XC between two
variables x and y can be defined by

RMSE (x, y) =

 1
N

N
j=1


xj − yj

2
, (18)

XC (x, y) =

N
j=1


xj − x̄

 
yj − ȳ




N
k=1

(xk − x̄)2
N
l=1

(yl − ȳ)2
, (19)

with x̄ =
1
N

N
j=1 xj defined as the mean of the variable. The

RMSEs and XCs can be compared either trajectory-wise at each
time instant or averaged over time in a statistical steady state to
assess the overall performance.

2.2.1. Limitation in filtering skill due to ignorance of statistics in the
orthogonal subspace

Here we show the necessity of considering the statistics in the
orthogonal subspace as described in the algorithm above. Results
with the blended particle methods are compared with the particle
method constrained inside one subspace as shown below. First, the
linear 2×2 system in (16) is tested in a strongly non-normal regime
with parameters a = 4, b = 5, ϵ1 = 10, ϵ2 = 0, σ = 0.5. The
observation is chosen as amixture of themodes v = Gx+σ0 = x+
αy+σ0 with observationmatrixG = (1, α). Considering the steady
state variance and decorrelation time var (x) = (0.0694, 0.0250)
and Tcorr (x) = (0.45, 0.20), we choose the observation time step
∆t = 0.05, shorter than the decorrelation time for both modes x
and y. Two sets of observation noises σ 2

0 = 0.01, 0.03 are tested.
The first one is smaller than the averaged energy and the second
one is slightly larger than the average. Three different filtering
methods are compared:

• QG-DO blended filter in one-dimensional subspace: run fully
resolved dynamics in the one-dimensional DO subspace as
in (A.5) and (A.6) (see Appendix A) in the forecast step, and
in the analysis step use the blended filtering method (that
is, run particle filter in e1 direction, and Kalman filter with
conditional Gaussian assumption in the orthogonal direction).
The exact solution of the mean and covariance matrix (A.3),
(A.4) (Appendix A) is used;
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Fig. 1. Filtering results for time series of the two components x and y from the 2 × 2 linear system using blended QG-DO method (blue), particle method in 1-d dynamical
subspace (red), comparedwith the optimal Kalman filter (green). The true solutions are shownbyblack dashed lines. Onedimensionalmixednoised observation v = x+y+σ0
is used in the model with two different noise amplitudes σ 2

0 = 0.01 and σ 2
0 = 0.03. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
Table 1
RMS errors and cross correlations (in parentheses) for variable x and y from the 2×2
linear system with different methods. The observation is v = x + y + σ0 . Results
for two different noise amplitudes σ 2

0 = 0.01 and σ 2
0 = 0.03 are listed.

Mode Method
DO QG-DO Kalman filter

(a) Observation error σ 2
0 = 0.01

x 0.1132 (0.9621) 0.0382 (0.9922) 0.0369 (0.9927)
y 0.1009 (0.9166) 0.0640 (0.9340) 0.0634 (0.9353)

(b) Observation error σ 2
0 = 0.03

x 0.1384 (0.9311) 0.0573 (0.9801) 0.0537 (0.9825)
y 0.1092 (0.8700) 0.0857 (0.8774) 0.0845 (0.8814)

• DO filtering in dynamical one-dimensional subspace: get the
exact mean and covariance by (A.3), (A.4), but only run
one-dimensional subspace dynamics in the forecast model to
calculate (e1, u1), and filter the prior x = x̄ + u1e1 with
the observation data using standard particle filter. After each
analysis step, recalculate the principal direction e1 using the
exact solution ofR, and resample to get the particle presentation
of u1;

• Standard Kalman filter: because the system and observation are
both linear and Gaussian, the optimal filtering result can be
achieved byKalman filter. Thereforewe also checkKalman filter
here for comparison.

Note that in themethods above, the first one is exactly the blended
particle method described in Section 2 with QG-DO model in the
forecast step applied to the linear system. Considering that only
linear dynamics occurs in the system with only Gaussian statistics
concerned, it is enough only to use the simpler QG method rather
than MQG. The second method is like a pure particle filter inside
a subspace. It only tries to resolve and filter the most important
direction and ignores the other one. Here with the help of the
exact solution, the principal direction can be calculated exactly.
The particles can always keep tracking themost energetic direction
with accuracy, so the only source of error comes from the ignorance
of the second direction containing little energy.

In Fig. 1 the filtering results for time series of the two
components x and ywith all the threemethods described above are
compared with the truth from the exact solution. The observation
Fig. 2. Comparison of RMSEs for component y from the 2 × 2 linear system with
different observations v = x+ αy+ σ0, α ∈ [0, 1] , σ 2

0 = 0.01, ∆t = 0.05. Results
with blended QG-DO method (blue), particle method in 1-d dynamical subspace
(red), and Kalman filter (green) are compared. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

data is a balanced mixture of the two components as v = x + y +

σ0 with two different observation noise amplitudes σ 2
0 = 0.01

and σ 2
0 = 0.03. The results for the blended QG-DO methods

almost overlap the optimal Kalman filter results in this linear
model with both noise amplitudes, and they are both close to the
truth from the exact solutions in dashed black lines. However,
for the DO particle filter with one most energetic direction of
the 2 dimensional model accurately captured by particles, large
filtering errors still appear in both cases and both components x
and y. For comparisons in more detail the corresponding numbers
for the RMSEs and pattern correlations as defined in (18) and
(19) are listed in Table 1. It can be seen that blended QG-DO
method gives similar small errors and pattern correlations with
the Kalman filter results while DO particle filter results in much
larger errors and smaller pattern correlations. Fig. 2 shows RMSEs
of the stochastic component ywith different kinds of observations
v = x + αy + σ0, α ∈ [0, 1]. For weakly observed case α ≪ 1
or even unobservable case α = 0, little information can be got
from the observations for y so particle values are poorly guided to
capture the randomness in y. Thus both QG-DO and DO methods
share relatively similar error (whereas Kalman filter is better since
it uses the exact solution of y component in the forecast model so
it can achieve an estimate with error amplitude comparable to the
observation noise σ0). As the observability of y increases, blended
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Fig. 3. RMSEs with different filtering methods for filtering L-96 system in weakly
chaotic regime (F = 5, upper) and strongly chaotic regime (F = 8, lower) with
plentiful observations at every grid point. Results for only filtering the subspace
represented by the first five most energetic dynamical basis modes using particle
filter (blue) are compared with MQG filter (green) and blended MQG-DO filter
(red). The dashed black line marks the amplitude of the observation noise. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

method QG-DO becomes superior to DO method increasingly, and
has similar errors with Kalman filter results. To summarize, with
even only a one-dimensional orthogonal subspace neglected and
tracking the most energetic direction of the system calculated
by the covariance R from exact solution, it is still insufficient for
the pure particle filtering method to capture the true dynamics
with accuracy in the non-normal regime. The filtering performance
can be greatly improved by incorporating the statistics in the
orthogonal subspace by taking the QG-DO filter. The filtering
results become comparable with the optimal Kalman filter.

In the second model, we test the same issue further with the
more complicated 40-mode L-96 system. Since the system has
nonlinearities and non-Gaussian statistics, we choose the blended
MQG-DO filter and MQG closure filter here with higher order mo-
ments corrections included, compared with the DO particle only
in the reduced order subspace with no statistics considered in the
orthogonal part. The dimensionality of the reduced subspace for
particle filter is chosen as s = 5 and dynamical basis is adaptive
and tries to get the principalmost energeticmodes. Two dynamical
regimes ofweakly chaotic F = 5 and turbulent F = 8 dynamics are
tested, and full observations of every grid point are used. In Fig. 3
we run a particle filter for the reduced order dynamical subspace
captured by the first five most energetic modes and ignore the or-
thogonal subspace. The results are compared with the MQG filter
and blended MQG-DO filter (see Section 4 for more detailed dis-
cussion and results for these filtering methods). The RMSEs for DO
particle methods become quite large even in this case with plen-
tiful observations and are above the observation error without fil-
teringwhile blendedMQG-DOmethod andMQGmethod give sim-
ilar small errors. This is an especially powerful demonstration for
F = 5 with plentiful observation since there are two dominant en-
ergetic modes, s = 5, and we have plentiful observations. Thus,
it can be seen that only by adding Gaussian statistics in the large
orthogonal subspace (as in MQG) can large improvements for fil-
tering performance be achieved.

2.2.2. Limitation in filtering skill due to fixed-in-time basis
Here we go on to test another aspect of the algorithms using

a dynamical basis. In the low dimensional subspace with full
statistics resolved by particles, one possible guess is that using the
fixed basis from the principal eigendirections of the covariance
matrix in steady state might give comparable results as filtering
with the dynamically evolving subspace, especially for F = 5.
We will test this using again the 40-mode L-96 model. The fixed
basis method is tested by taking also the first five most energetic
Fourier modes but from the statistical stationary state. The filter
is applied in the same way as the blended particle filter in two
subspaces only with this fixed-in-time subspace basis. Thus in
this method, there is no need to update the dynamical basis as in
the algorithms described above and the other strategies in both
two subspaces will be carried out with particle representations in
one subspace and conditional Gaussian corrections in the other
subspace correspondingly. Again we compare this method with
the blended MQG-DO filter with evolving basis and MQG closure
filter in two dynamical regimes F = 5 and F = 8 with full
observations at each grid points. In Fig. 4, the RMSEs for the
fixed basis filter are compared with the blended filter results. It
can be seen that the fixed-in-time filter suffers frequent filter
divergence while the blended filter with dynamical subspace
basis keeps performing well. The reason for this serious filter
divergence can be shown by checking the fraction of total energy
contained in the fixed subspace. As in the second row of Fig. 4,
the portion of energy in the fixed subspace changes as the system
evolves with time. The statistics of the system evolve in time
and will not always be confined inside the same steady state
subspace. At some particular time instants the energy in the
fixed subspace reaches extremely small values, making nearly no
energy left in the subspace. As a consequence, the particles in
the subspace with little energy (variance) will collapse altogether
and diverge at these time instants ending up with large filtering
errors. Therefore although we can choose fixed basis representing
the most important directions in steady state, the statistics for
the system still change directions as they evolve in time. Ignoring
this time dependent dynamical feature of the principal directions
will lead to serious particle divergence with failure in capturing
the right amount of higher order statistics in the key subspace
of interest. For the MQG closure filter, it adopts fixed basis but
includes no particle representations. So particle collapse is not
a problem for this method; thus in this test regime, the MQG
filter gives comparable results with the blended MQG-DO filter
(Section 4will show the deficiencies of theMQGmethod compared
with the MQG-DO filter in strong non-Gaussian regime).

3. Practical strategies for realizability and stability

In the previous section we introduce the basic mathematical
framework of the blended filtering algorithms and illustrate
several important aspects of the methods by examples. Still to
achieve desirable performance of the blended filtering methods,
several practical numerical treatments should be considered to
make sure that the schemes are both accurate and efficient in
computing. These issues follow from the realizability and stability
features of the methods. That is, we need to make sure that
the estimated state variables in particle forms are consistent in
statistics with the predicted mean and covariance and the positive
definite property of the estimated conditional covariance matrix
must be preserved, otherwise filter divergence and instability
of the schemes will take place. The first problem comes from
finding the most probable conditional distribution p (u2|u1) in the
orthogonal subspace u2 given the particle representation in the u1
subspace as needed in (3). Below, through information theory a
conditional Gaussian distribution N


ū2 (u1) , R−

2


is achieved and

a realizable condition for R−

2 (that is, R−

2 to be positive-definite)
is established. The second problem concerns the stability of the
particle samples, which is also tightly related with the realizability
condition. Proper inflation should be added to the particles in
the resample process to avoid particle collapse. These practical
strategies which are key to the accuracy of the filtering methods
are discussed and illustrated by some examples in this section.
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Fig. 4. Limitations by using fixed-in-time basis: the first row shows the RMSEs from filtering results with fixed subspace basis defined by first 5 leading principal EOFs
(blue) compared with the MQG filter (green) and the blended MQG-DO filter with dynamical basis (red). Two different regimes F = 5 and F = 8 are tested with plentiful
observations at every grid point, and the dashed black line shows the amplitude of observation error. In the second row, the corresponding energy contained in the fixed-in-
time subspace basis are compared with the filtering errors above. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
3.1. The most probable conditional distribution p(u2|u1) through
information theory

As described in (7), in part I of the blended algorithm, the
forecast statistics supplied at each analysis time are the following:

(A) A particle approximation for the marginal distribution

p− (u1) =

Q
j=1

pj,−δ

u1 − u1,j


;

(B) The mean ū−

2 and the covariance matrix

R =


R1 R12

RT
12 R2


.

The goal here is to find an efficient way to use these statistics to
build the forecast prior distribution with the form in (3) with a
conditional Gaussian distribution.

The maximum-entropy principle from information theory tells
that the least biased most probable distribution should maximize
the entropy defined as S [p] = −


RN p (u) log p (u) du [27]. With

the help of this principle, the problem can be rephrased as to find
the distribution p∗

= p∗ (u2|u1), such that,

p∗ (u2|u1) = argmaxp∈C


p− (u1) S [p (u2|u1)] du1, (20)

under the constraintsC of consistent statistics for themean ū2 and
covariance R2 in theu2 subspace aswell as the cross-covariance R12
between the two subspaces from the prior distribution. This most
probable conditional distribution p (u2|u1) can be found formally
via the method of variations. Taking variations of the entropy and
constraints C, the method of Lagrangian multipliers shows that
indeed a Gaussian distribution gives the optimal distribution that
maximizes the entropy in (20). A detailed derivation of this result
is stated in Appendix C. Furthermore, through the derivation of
the max-entropy solution, it can be shown that for the conditional
Gaussian distribution N


ū2,j, R−

2


conditional on values u1,j in

the low dimensional subspace, only the conditional mean ū2,j
is dependent on different particle values while the conditional
covariance R−

2 can be expressed universally as

R−

2 = R2 −


ū′

2 (u1) ⊗ ū′

2 (u1) p (u1) du1

= R2 −


j

ū′

2,j ⊗ ū′

2,jpj. (21)

Thereforewith the help of information theory, the prior covariance
R2 from the forecast model is decomposed into two separate parts.
The first part is represented by the fluctuation of each conditional
mean ū′

2,j = ū−

2,j − ⟨u2⟩, and for each particle the uncertainty is
further quantified by an additional covariance R−

2 (independent
of u1,j) calculated by (21). The fact that R−

2 is independent of
the choice of particles in u1,j is extremely important for reducing
the computational cost for the large scale piece of the covariance
matrix when high-dimensional problems are applied, and this
property will be exploited further in the following steps. However,
at this stage a proper way of getting the values of the conditional
mean ū−

2,j is unclear, whereas the above results infer that it is
reasonable to make use of the max-entropy property. Then the
issue becomes how to find a computational affordable way to
approximate the max-entropy solution which is consistent with
the forecast statistics.

3.1.1. Solving the underdetermined system
The conditional mean fluctuations ū′

2,j = ū−

2,j −

u−

2


can be

solved by enforcing the consistent condition for the mean and
cross-covariance of the forecast result, i.e.

ū−

2 =


u2p− (u1) p (u2|u1) du1du2

=


ū2 (u1) p− (u1) du1,

R12 =

 
u1 − ū−

1


⊗

u2 − ū−

2


p− (u1) p (u2|u1) du1du2

=

 
u1 − ū−

1


⊗

ū2 (u1) − ū−

2


p− (u1) du1.

Here the conditional mean ū2 (u1) =

u2p (u2|u1) du2 is defined

through the conditional measure p (u2|u1) in the u2 subspace.
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In terms of the discrete representation, the above system can be
written as a linear system

p1u′1
1,1 · · · pQu

′Q
1,1

...
. . .

...

p1u′1
1,N1

· · · pQu
′Q
1,N1

p1 · · · pQ


(N1+1)×Q

×


u′1
2,1 · · · u′1

2,N2
u′2
2,1 · · · u′2

2,N2
...

. . .
...

u′Q
2,1 · · · u′Q

2,N2


Q×N2

=


R12
0


(N1+1)×N2

. (22)

For simplicity following we will denote this system abstractly as
LU2 = F . In general cases with sufficient ensemble size Q ≫

N1 + 1, the linear system above is highly underdetermined with
infinite many solutions. Motivated by the max-entropy principle
described above, the redundancy can be reduced by seeking among
the solutions in (22) the optimal onewhichmaximizes the entropy

u∗

2 = argmaxu2S [pG (u2|u1)] . (23)

Here the target distribution pG (u2|u1) is conditional Gaussian,
thus the expression for the entropy can be simplified with simple
calculation [27] as

S [pG (u2|u1)] =
1
2
log det


R−

2


+

N2

2
(log 2π − 1) . (24)

Combining the expressions in (21), (23) and (24), we need to
find the optimal solution u∗

2 of the linear system (22) such that
the logarithm of the determinant of the conditional covariance is
maximized

ū′

2,j = argmax log det


R2 −


j

pjū′

2,j ⊗ ū′

2,j



= argmax log det


I −


j


p1/2j R−1/2

2 ū′

2,j


⊗


p1/2j R−1/2

2 ū′

2,j


. (25)

This nonlinear optimization problem described above involving
the determinant of a large scale matrix is way too expensive
considering the high dimensionality of N2 subspace. But note
that the fluctuation ū′

2,j from the linear system (22) is calculated
using the cross-covariance R12, which is assumed to be small
representing the weak correlations between the two subspaces (in
fact, in the ideal situation with P in (7) as the exact eigendirections
of R, the transformed matrix Rt under the eigenbasis becomes
diagonal and R12 becomes exactly 0). Therefore it is a reasonable
assumption to assume ∥R12∥ ∼ O (ϵ) and

u′

2,j

 ∼
LĎF

 ∼

O (ϵ) with ϵ ≪ 1 and the linear system (22) denoted abstractly
as LU2 = F with the pseudoinverse operator LĎ assumed to be
bounded. Using the asymptotic expansion of the determinant

det (I − ϵA) = −ϵtrA + O

ϵ2 . (26)

One proper estimation for the determinant in (25) is to seek a
first-order approximation by minimizing the trace of the matrix
A. Note also that each component of ū′

2,j is calculated column-
wise independent with each other in the linear system (22),
seeking the optimal solution minimizing each mode under the
L2-norm

p1/2j R−1/2
2 ū′

2,j


2

is sufficient. Thus, the least-squares
solution can be solved easily by taking the pseudo-inverse of
the coefficient matrix of the linear system. However, the first-
order approximation described above still requires calculating the
inverse square-root of the covariance matrix R2, which becomes
computational forbidden given the high dimensionality of the
problems. A further simplification is to considerminimizing the L2-
norm

p1/2j ū′

2,j


2
instead. In fact, it is not hard to check that

tr


j


p1/2j R−1/2

2 ū′

2,j


⊗


p1/2j R−1/2

2 ū′

2,j


=


j

pjtr

ū′

2,j ⊗ ū′

2,jR
−1/2
2 R−1/2

2


= tr


j

p1/2j ū′

2,j ⊗ p1/2j ū′

2,j


· R−1

2


.

Use the trace inequality λ1 (A) trB ≤ trAB ≤ λn (A) trB, for positive
semidefinite matrices A, B with λ1, λn the smallest and largest
eigenvalues, and that R−

2 is independent of j here (result from
the max-entropy solution). Therefore, the approximation using
least-squares solution of p1/2j ū′

2,j instead of p1/2j R−1/2
2 ū′

2,j is always
appropriate given that the condition number of R−1

2 is not too
large, i.e. κ


R−1
2


∼ 1, which is actually a prerequirement for

the decomposed subspace u2 (and actually, a case with too large
a condition number, κ


R−1
2


≫ 1, is often a sign of serious filter

divergence).
For practical implementations, the two approaches can both be

carried out with simple rearrangements of the linear system (22):

(A) Minimizing the L2-norm
p1/2j R−1/2

2 ū′

2,j


2
: solve the least-

squares solution of L̃V2 = F̃ by defining

L̃ = LW−
1
2 , F̃ = F R

−
1
2

2 , V2 = W
1
2 U2R

−
1
2

2 ,

withW = diagj

pj

.

(B) Minimizing the L2-norm
p1/2j ū′

2,j


2
: solve the least-squares

solution of L̃V2 = F̃ by defining

L̃ = LW−
1
2 , F̃ = F , V2 = W

1
2 U2,

withW = diagj

pj

.

The least-squares problem above can be easily solved by applying
Moore–Penrose pseudoinverse of L̃. The two different approaches
with slight difference can be chosen according to the scale and
complexity of the problem, whereas the second one is always
preferred since it is much cheaper and exhibits no obvious
deficiency in practical implementations. We will always use the
second approach in the numerical tests in the next section.

3.1.2. Corrections for realizability
Finally note that the above solutions of ū′

2 from the least squares
solution for both the two approaches may not guarantee the
positive-definite requirement for the covariance R−

2 in (21), that
is, realizability may still be violated. With unrealizable covariance
R−

2 , the condition number κ

R−1
2


may explode, resulting a

meaningless approximation for the fluctuation terms ū′

2. In theory,
R−

2 is defined as the covariance matrix for ū−

2 (u1) − ū−

2 under
the optimal measure p∗ (u2|u1), showing that the conditional
covariance R−

2 will always stay positive-definite given that the
maximum-entropy solution of ū2 (u1) is chosen. However the
maximum-entropy problem may not have a solution and as
described above, the least squares solutions are at most a first
order approximation for the max-entropy solution. Therefore
realizability in our approach is not certainly guaranteed and needs
to be checked. On the other hand, to check each of the eigenvalues
of the covariance matrix requires eigenvalue decomposition of the
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large scale matrix R−

2 = R2 −


j ū
′

2,j ⊗ ū′

2,jpj. To reduce this
computational cost, note that the correction term here is the sum
of a series of rank 1 matrix ū′

2,j ⊗ ū′

2,jpj with eigenvector ū′

2,j. Then
realizability checking can be achieved by adding an extra inflation
term αj ∈ [0, 1] according to each direction ū′

2,j such that

R−

2 = R2 −


j

αjpjū′

2,j ⊗ ū′

2,j.

Here the inflation coefficients αj can be chosen according to

• αj = 1, if ū′T
2,j


R2 −


k ū

′

2,k ⊗ ū′

2,kpk

ū′

2,j > ϵ0;

• αj = 1 −
ϵ0−ū′T

2,j


R2−


k ū

′
2,k⊗ū′

2,kpk

ū′
2,j

pj
ū′

2,j

4 , otherwise;

where ϵ0 ≪ 1 is a small number chosen to avoid numerical errors,
and 1 ≤ j ≤ Q . Then this process should be done for all the Q
ensemble members, making this process not a quite efficient one.
In an even simpler algorithm,we inflate the conditional covariance
to its upper bound, that is, set

R−

2 = R2 ≥ 0.

This is the crudest correction and positive definite property
will always be satisfied in this case. As we will see in the
examples following, for QG-DO filter with smaller variances in
the orthogonal subspace, this maximum inflation can effectively
improve the filter performance. ForMQG-DO filter, the realizability
condition is seldom violated due to the accurate prediction from
the more sophisticated prediction model and we use the above
algorithm as needed.

3.2. Stability of the schemes and resampling strategies

In applications of particle methods, another issue that needs
to be addressed is about particle collapse. The normalized particle
weights pj tend to concentrate on a few values (or with even one
particle with importance weight near 1) as time evolves. The over-
concentration of particles could even be typical in low dimensional
problems. Furthermore, for the blended schemes, particle collapse
is also related with the violation of the realizability condition of
the covariance R−

2 . Through (21), it can be found that the matrix
R−

2 becomes non-positive definite when the fluctuation variance
j ū

′

2,j ⊗ ū′

2,jpj becomes larger compared with the forecast result
R2. This is tightly related to the collapse of the particles. In fact, the
covariancematrix R approximated by the particleswill become ex-
tremely small when particles degenerate to only a few values; and
in turn the unrealizable covariance R2 will further intensify particle
collapse. Therefore to inherently remove thedanger of unrealizable
issues, we should consider the stability of the particle method.

The common strategy to stabilize the scheme is to perform
resampling sufficiently often [24]. The idea in resampling is to
duplicate particles with larger weights and remove the other ones
with negligible weights. This process can be viewed as adding
extra variances or noises into the particle system and inflating
the corresponding covariance. Specifically, in stochastic systems,
the extra variance can be added automatically through the
internal uncertainty by integrating the model in further steps; for
deterministic systems like the L-96 model, additional noises with
small amplitude needed to be added artificially to each duplicated
particle to enhance the diversity of particle values. One popular
resampling strategy is the residual resampling [24] which is an
efficient way to decrease the variance added due to the process.

Especially here, we consider the additional noise added to each
duplicated particles for deterministic systems. It can be noticed
that particle collapse is strongly related with the prediction skill
of the forecast model. Less accurate predictions require larger
variance added to the particle values as a compensation, whereas
the amplitude of the noises needs to be controlled to avoid
unrealizability such that R−

2 = R2−


j pjū
′

2,j⊗ ū′

2,j ≥ 0, where too
large noises may overinflate the second term on the right side (for
example, by applying the QG-DOmodel, the forecast covariance R2
is easy to become extremely small since the high order nonlinear
interaction is cut off between the two subspaces, thus making the
violation of realizability quite easy to take place). One may hope
that smaller noises are added when the predictions from most
ensemble members are relatively good, while larger variances
should be introduced to the particles to give better corrections if
the errors become larger. Herewe propose one possibleway to add
the inflation of the variance adaptively in the resampling process.
The effective ensemble size Neff introduced in [24]

Neff =
1

Q
j=1

p2j

,

can be used as onemeasure for the amount of particles which have
relatively good approximations about the state variables. Note that
1 ≤ Neff ≤ Q . Larger noises as a correction term should be added
during resampling when serious particle collapse takes place, say
Neff ∼ 1; and on the other hand the inflation needs to be kept small
whenmost of the particles have desirable values, sayNeff ∼ Q , thus
no extra noises will be introduced to the system. According to this,
the inflation added to each resampled particle is given as a white
noise with the variance measured as

σ 2
= (M − m) exp


1 − Neff

2


+ m, (27)

where M and m control the largest and smallest inflations added.
The values can be chosen according to the prior variances of
the particles. The noises increase exponentially when particles
collapse. With this exponential function, large additional noise
will be added only when the effective ensemble size Neff becomes
extremely small, that is, close to collapse. Thus in general cases
no strong perturbations will be introduced to destroy the statistics
captured from the forecast model.

In general, the resampling process can be summarized as
follows:
Algorithm. (Resampling) If the effective particle number becomes
less than some threshold, Neff < M (M = Q/2, say), begin this
resampling process.

• Duplicate or remove particles according to their weights pj
using some standard strategy (residual resampling, say);

• For the duplicated particles uj with kj copies, add a small
Gaussian perturbation ν ∼ N


0, σ 2


to each particle,

ũj = uj + ν,

with σ 2 calculated as in (27);
• Assign the particle weights to be uniform pj =

1
Q .

3.3. Realizability and stability check using L-96 system

Here again, we check the realizability and stability issues using
the L-96 system (17). First, as alreadymentioned before,maximum
inflated conditional covariance matrix R−

2 = R2 rather than the
statistical consistent form (21) should be applied for QG-DO filter,
which underestimates the energy inside the orthogonal subspace
u2 due to its cut-off of third order interaction. Fig. 5 shows the
RMS errors for QG-DO filter with both inflated R−

2 and its original
form compared with the MQG-DO result. Here we use F = 5 with
complete observations. It can be seen that QG-DO filter becomes
easier to diverge with no inflation added to R2. The reason can
be explained from the plots for the fraction of energy in the u2
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Fig. 5. The necessity of using inflated R2 covariance matrix in QG-DO model. First
row: The RMSEs for QG-DO schemes with and without R2 inflation compared with
the MQG-DO results in regime with plentiful observations p = 1 and moderate
observation time ∆t = 0.2 for F = 5. Second row: the fraction of energy in the u2
subspace corresponding to the three methods on the left.

subspace, shown in the right panel. MQG-DOmethod can achieve a
large amount of energy in the orthogonal subspace due to its more
careful calibration about the statistics in this subspace,whereas the
original QG-DOmethod captures very little energy in this subspace.
With a little inflation from R2 for QG-DO filter, the total variance
in u2 subspace can get increased, thus effectively avoiding serious
filter divergence as in the original case.

Second, we can check the stability of these filtering strategies.
Here we test the model in a typical regime with extremely small
observation noise r0 = 0.01 and long observation time ∆t =

0.25 close to the decorrelation time for strongly chaotic dynamics
F = 8. Also regularly spaced sparse observations p = 4 are used.
This regime of high quality sparse space–time observations is a
difficult test for particle methods [26, chap. 15]. The first two rows
of Fig. 6 show the time series of RMS errors andpattern correlations
running for a long time T = 1000 using MQG filter, MQG-DO
filter, and QG-DO filter with the adaptive resample strategy as
described above. Only MQG filter diverges for a short time and
converges again quickly during this long process. The third row
of Fig. 6 plots the smallest eigenvalue of the prior covariance
R2 to check the realizability. No violation appears for both
MQG-DO andQG-DOmethod. Finally to show the effect of adaptive
resampling, we plot the effective ensemble size Neff in the last row
for MQG-DO and QG-DO filter with adaptive resampling as well
as the QG-DO method with constant perturbation all along the
process. The results show that the adaptive inflation can effectively
avoid particle collapse while QG-DOmethodwill collapse to single
particle value if constant amplitude of noises is added. The inflation
function (27) is also plotted on the right. Large noises are only
added when particles are close to collapse.

4. Applications of the blended algorithms

In this section, we test the performances of the blended particle
filtering strategies developed above using the L-96 system (17)
with 40 state variables. The L-96 system is designed to mimic
baroclinic turbulence in the midlatitude atmosphere with the
effects of energy conserving nonlinear advection and dissipation.
This model has a wide variety of different chaotic regimes as the
external forcing F varies, ranging from weakly chaotic to strongly
chaotic to fully turbulent (see a comparison of the statistics
of L-96 system in different dynamical regimes in Appendix B).
The filter performances with blended methods are compared in
these various chaotic regimes with different temporal observation
frequencies as well as plentiful and regularly spaced sparse
spatial observations. Two dynamical regimes with quite different
statistical features will be considered here; one is a weakly chaotic
regime F = 5 with strong non-Gaussian statistics for the leading
most energetic modes and the other is a strongly chaotic regime
F = 8where the statistics of everymode become almost Gaussian.
We divide the numerical tests into two categories depending on
the precision of forecast systems. Firstly, the filtering skill using
perfect forecast system with the external forcing value F the same
as that in the truth will be tested. Secondly, considering that it
is always impossible to get access to the exact perfect dynamics
in real applications of realistic models, it is useful to check the
effects of model errors in filtering process. In this test model
of L-96 system, model errors are introduced by perturbing the
external forcing values away from the truth. It is interesting to
check whether these methods can still preserve the skill of getting
the right statistics of each mode with errors in the forecast models
and how the model errors will affect the filtering results in various
statistical regimes with both plentiful and regularly spaced sparse
observations.Wewill use the forecastmodelwith incorrect forcing
F = 6, as the imperfect model for both the weakly chaotic F = 5,
and strongly chaotic F = 8, regime. This is a challenging test suite
for the blended filters with model error.

4.1. Comparison of filter performance in various regimes

First we test the case without model error included. Two
different external forcing terms (F = 5, weakly chaotic; and
F = 8, strongly chaotic) of the 40-mode L-96 system will be
considered here to check the performances of the methods in
both Gaussian and non-Gaussian statistical regimes. With periodic
boundary condition assumed and translation invariant property
satisfied for the system, it is natural to study the statistics of the
system in different regimes utilizing discrete Fourier modes. In
weakly chaotic regime F = 5, the energy spectrum is dominated
by the first several Fourier modes with wavenumbers 7, 8. The
probability density functions of the first two Fourier modes appear
strong non-Gaussian distributions with fat tails in steady states.
The steady state single-point statistics (averaged total variance
in steady state for each grid point) can be calculated as Ēp =

2.21. It takes a long time for the modes to forget their previous
information, which can bemeasured by the absolute decorrelation
time (that is, the integration over time about the absolute value of
the autocorrelation function) as Tcorr = 4.4. On the other hand, in
the strongly chaotic regime F = 8, the energy spectrum becomes
more homogeneous and the probability density functions of all the
Fourier modes in statistical steady state are close to Gaussian. The
corresponding single-point statistics and absolute decorrelation
time in this regime can be measured as Ēp = 6.40 and Tcorr = 0.32
respectively (see Appendix B). In the filtering process, with longer
observation time step and sparser observations of the grid points,
capturing the non-Gaussian features of the system becomes more
crucial in getting accurate filtering results because the corrections
from the observation data become less sufficient for improving the
model forecasts. To compare the changes in different regimes with
different observation types, observation data is taken regularly at
every p grid point in the physical domain, that is, observations at
40/p grid points with equal distance are taken; the case p = 1
corresponds to plentiful observations and we also test cases p =

2, 4, 8of regularly spaced sparse observationwith correspondingly
20, 10, 5 grid points observed compared with the full model with
40 grid points in total. The observation noises are taken to be
a Gaussian white noise with variances a little more than half of
the steady state single-point statistics Ēp; specifically, we choose
r0 = 1.5 for F = 5 and r0 = 3.5 for F = 8. For each regime, 8
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Fig. 6. Checking for long time stability of the schemes. The first two rows show the RMSEs and pattern correlations forMQG, QG-DO, andMQG-DOmethods in a tough regime
for particle methods with sparse infrequent high quality observations. The third row shows the smallest eigenvalue of the posterior matrix R2 for eachmethod after filtering.
The last row shows that adaptive inflation in the resampling process for QG-DOmethod can effectively avoid particle collapse and ensure stability. The corresponding particle
inflation function is also plotted.
different observation time steps ranging from quite frequent times
all the way to nearly the absolute decorrelation time are taken;
that is, ∆t = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 for F = 5
and ∆t = 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32 for F = 8.

We will test the filtering performances in these two distinct
dynamical regimes with the four different forecast models
described in Section 2.1.2 denoted as MQG-DO filter, QG-DO filter,
and MQG filter, QG filter. The first two models (MQG-DO and
QG-DO filter) are the blended methods with an ensemble of
particles running in a low dimensional reduced order subspace.
The dimensionality of the reduced subspace is chosen to be s =

5, compared with the full dimensionality of 40 for the true L-96
system, to capture the non-Gaussian statistics inside the subspace.
Note that the number of the positive Lyapunov exponents, which
reflects the dimension of the expanding subspace of the attractor,
is 9 and 13 separately [26] for the two regimes F = 5 and F = 8.
So the five dimensional adaptive subspace with particle filtering
contains at most half of the unstable directions on the attractor
(this offers another explanation for why we need to consider
the conditional Gaussian mixtures in the orthogonal subspace in
the blended methods as described in Section 2.2.1). For all the
computations following, the ensemble is chosen to contain 10,000
particles, which is large enough to capture the subspace statistics
with desirable accuracy (and indeed much smaller ensemble size
can be used, and the larger particle number is applied here to
get rid of the random fluctuations in the comparisons for errors
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Fig. 7. Comparison of RMSEs in weakly chaotic regime F = 5 with observation noise r0 = 1.5. The four panels display results with different spatial observation frequencies
p = 1, 2, 4, 8, and errors with increasing observation time ∆t are compared in each panel. The error bar marks the variances of the RMS errors in time along the filtering
trajectory. Blended MQG-DO method gives the best results while QG filter has the worst error.
Fig. 8. Comparison of RMSEs in strongly chaotic regime F = 8with observation noise r0 = 3.5. The four panels display results with different spatial observation frequencies
p = 1, 2, 4, 8, and errors with increasing observation time ∆t are compared in each panel. The error bar marks the variances of the RMS errors in time along the filtering
trajectory. Blended MQG-DO method gives the best results while QG filter has the worst error.
with other factors changing). The second two methods (MQG and
QG filter) are two further simplified models with only quasi-
Gaussian statistics (at most including the steady state higher
ordermoments) considered. Despite the insufficiency in accurately
capturing non-Gaussian features of these closure methods, as it
can be seen in the results following, the MQG method can give
desirable filtering results in regimes where non-Gaussianity is
not a strong factor of interest. The methods without the need
of running an ensemble of particles become even more efficient
in computation, making it a more feasible model for filtering
real climate systems with irreducible high dimensional attractors.
Finally the QG closure method with all higher order statistics
neglected is compared to emphasize the role of higher order
moments in improving filtering performances.
In Figs. 7 and 8, the RMS errorswith various observation steps as
well as plentiful and sparse spatial observations are compared for
regime F = 5 and F = 8 separately. Alongwith each RMSE plotted,
one errorbar is added at each test point to measure the variance of
the errors in time along the long trajectory in the realization. The
introduction of these variances in error is to measure the stability
features of these methods. For two filtering methods with similar
amplitude of the time averaged RMSEs, the temporal evolution of
the errors in time may have either large deviations from the mean
or keep staying close to the time averaged value. So larger variance
in the error indicates higher possibility of filter divergence and
weaker robustness of the method. For both regimes, the blended
MQG-DO filtermaintains good performancewithminimumRMSEs
among all the methods tested. In the near Gaussian regime F = 8
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and in non-Gaussian regime F = 5 with frequent spatial and
temporal observations where non-Gaussian effect is not a central
issue, the MQG filter has similar filtering ability compared with
MQG-DO filter. This shows the advantage ofMQG filter in Gaussian
regimes considering its higher efficiency. As the non-Gaussian
features become gradually important in regime F = 5 with sparse
observations or long observation steps, capturing the true statistics
with accuracy becomesmore crucial for improving filtering results,
and MQG filter appears inferior with larger error compared with
MQG-DO filter. MQG filter also gets larger variances in the error
(from the errorbars) even with similar time averaged RMS errors,
showing weaker stability compared with MQG-DO filter. The QG-
DO filter works fine with small observation steps and plentiful
or not too sparse spatial observations whereas the error grows
larger with sparser and less frequent observations. The QG filter
ignores all the higher order moments in the dynamics, thus fails
to filter the system uniformly in all regimes. This offers another
example to show the importance of higher order statistics in
successfully filtering the system. For more tests on non-Gaussian
filter performance in the perfect model setting, see [19].

4.2. Filtering performance with model error

In the above, we compare extensively the filter performances
of different filtering methods in different dynamical regimes with
various types of observations. There all the computations are
carried out under the assumption that the exact dynamics of the
system are known. However a central issue in practical filtering of
turbulent signals is the inclusion of model error, since the perfect
system is always not available in practical applications considering
the complexities in both modeling and computation of the high
dimensional turbulent system. Keeping this in mind, it is useful
here to test the performance of these filtering methods in the
appearance of model errors using the simpler L-96 system in the
first place. There exist different sources for model errors, driving
the imperfect model solution away from the true dynamics of the
system to another regime. Since the dynamical regimes of the L-
96 system change with different values of external forcings, one
simple and effective way to simulate model error in L-96 model is
to perturb the external forcing away from its original value. In our
test cases here, we still get the truth from two typical dynamical
regimeswith F = 5 and F = 8, while imperfectmodel errorwill be
introduced to the system by setting F = 6 for the forecast models
in both cases. Therefore, we will check the models’ ability to filter
the signals in two distinct regimes F = 5, 8 using the same forecast
dynamicalmodelwith imprecise predictions from F = 6. As can be
seen in Appendix B, the steady state statistics with F = 6 become
quite close to Gaussian distributions. Thus, themodel errors for the
Gaussian regime, F = 8, occur through the different energetics in
the imperfect forecastmodel.Whereas considering the highly non-
Gaussian features of the regime F = 5, it is a difficult test to apply
these imperfectmodelswith near Gaussian statistics to capture the
non-Gaussian statistics in this regime.

We will test the filter performances with model error F = 6 in
the two regimes F = 5, 8 with moderate observation noise and
observation time step, that is, r0 = 1.5, ∆t = 0.2 for F = 5
and r0 = 3.5, ∆t = 0.12 for F = 8. The blended MQG-DO and
QG-DO filter as well as the Gaussian MQG filter with model error
included in the forecast model will be tested. The setup for these
methods is the same as the previous case without model error.
For comparison, we also include the results from the ensemble
adjustment Kalman filter (EAKF) with inflation and localization
with 100 ensemble members (no significant change occurred with
larger ensemble sizes) [8,9]. EAKF works well with a relatively
smaller ensemble size by adjusting the posterior particle values
close to the hyper-planewhere prior results locate. However in the
present case with model error in the forecast model, adjustments
of particles to the prior distribution with wrong statistics may
not be good for accurate filtering. To avoid this over-emphasis
about an inaccurate prior distribution, a relatively larger inflation
factor is added for the EAKF method in order to make sure
the filter solutions do not diverge from the observations in the
inaccuratemodel forecasts. Thuswe choose inflation factor 1.4 and
localization factor 0.2 throughout the cases.

In Fig. 9 we compare the RMS errors and pattern correlations
between the posterior mean and the truth in the two dynamical
regimes with regularly spaced sparse observations p = 4. The RMS
errors for the MQG-DO filter stay low in comparable amplitude
with the observation noise considering only 1/4 of the grid points
observed. The MQG filter is only a little worse and it performs
better in the near Gaussian regime F = 8 than that in the non-
Gaussian regime F = 5 due to its errors in estimating the higher
ordermoments. For theQG-DOmethod, it becomes less stable here
with model error introduced since it uses the inaccurate dynamics
in the forecast model without steady state corrections like the
MQG-DO and MQG methods. The EAKF method is stable but has
larger errors in the filtering results. For further comparisons,we list
the time averaged RMS errors and pattern correlations with these
methods in Table 2. Both plentiful (p = 1) and three regularly
spaced sparse observation networks (p = 2, 4, 8) are compared. In
addition, to display the effect of model errors, we also list the RMS
errors and pattern correlations for MQG-DO filter results using
perfect system without model error. Due to the near Gaussian
statistics of the imperfect model with F = 6, the imperfect model
does not diminish the filter performance much in regime F = 8.
On the other hand, in regime F = 5, the imperfect forecast models
with near Gaussian statistics show large deficiency in filtering
results compared with the perfect model results. But MQG-DO
remains quite skillful even with this severe model error.

Finally, it is also useful to check the methods’ ability to capture
the right statistical distributions of the true system. The accuracy of
the filtering results always relies on forecast models’ skill to obtain
the right statistics. Due to the ergodicity of the L-96 system in both
regimes, the pdfs of the modes with both blended methods and
EAKF can be achieved by running an ensemble of simulations in
statistical steady state for a long time. Large ensemble size will
be applied here to get smoother distributions. We have already
compared the pdfs achieved through different filtering methods
with the perfect model in our previous paper [19]. Further here in
Fig. 10, the distributions using methods with model error included
are plotted. First the forecast pdfs for the absolute values of the
first most energetic Fourier modes (

û7
 for F = 5 and

û8


for F = 8) are compared. The absolute value of a Gaussian
random variable will appear as a Rayleigh distribution as shown
in the pdfs of EAKF method. In regime F = 5, even with the
imperfect forecast model, the structure of non-Gaussianity of the
first mode can still be captured byMQG-DOmethod. MQGmethod
gives less accurate estimation whereas QG-DO method becomes
poor in getting the non-Gaussian features since no higher order
statistics are considered in this method. On the other hand, in
the regime F = 8, all the results appear more Gaussian. Still
MQG-DO can have a much more accurate characterization of the
true distribution whereas EAKF results have much wider spread.
Besides the forecast distributions, we also compare the pdfs for the
forecast error, that is, the distribution from the difference of the
model prior and the truth û−

k,model − ûk,truth. Tighter distributions
in the forecast error show better skill in predicting the truth with
these filtering methods. As shown in both cases, MQG-DO method
gets the tightest pdfs for the error, while EAKF has the largest
forecast error spread. At last, to measure the influence of model
errors in filter performance, we plot the same pdfs using MQG-DO
method with and without model errors in Fig. 11. In regime F = 5,
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(a) F = 5.

(b) F = 8.

Fig. 9. Comparison of RMSEs and pattern correlations between methods with model error F = 6 in the forecast model. The upper panel is the results in regime F = 5 with
parameters r0 = 1.5, ∆t = 0.2, p = 4; the lower panel is the result in regime F = 8 with parameters r0 = 3.5, ∆t = 0.12, p = 4.
Table 2
Comparison of RMSEs and pattern correlations (XC) through different filtering methods with model error. Full (p = 1) and regularly sparse (p = 2, 4, 8) observations are
both tested in the two different dynamical regimes F = 5 and F = 8 with observation noises and observation time step r0 = 1.5, ∆t = 0.2 and r0 = 3.5, ∆t = 0.12
respectively. The model error is introduced by setting F = 6 in the imperfect forecast model for both regimes. The last column shows the MQG-DO filter results without
model error in the forecast model for comparison.

p MQG-DO MQG QG-DO EAKF MQG-DO w/o ME
RMSE XC RMSE XC RMSE XC RMSE XC RMSE XC

(a) F = 5, r0 = 1.5, ∆t = 0.2
1 0.8134 0.9536 0.6001 0.9756 1.1594 0.9075 0.6694 0.9677 0.3009 0.9919
2 0.8478 0.9466 0.8546 0.9428 1.3914 0.8649 0.8790 0.9390 0.4552 0.9814
4 1.1136 0.8968 1.4417 0.8353 1.7675 0.7685 1.8242 0.6420 0.7369 0.9508
8 1.5175 0.7895 1.5391 0.7745 2.3525 0.4238 2.2212 0.3908 1.0890 0.8899

(b) F = 8, r0 = 3.5, ∆t = 0.12
1 1.1025 0.9611 0.9153 0.9717 1.4660 0.9224 1.3136 0.9411 0.6541 0.9840
2 1.3991 0.9310 1.5276 0.9116 2.0987 0.8314 1.7584 0.8843 1.1142 0.9528
4 2.4786 0.7481 2.5658 0.7286 3.4275 0.5201 3.5725 0.4359 2.2832 0.7889
8 3.0687 0.5538 3.0985 0.5494 4.0680 0.2695 21.7222 0.1711 3.0578 0.5599
the filter’s prediction for forecast statistics becomesmore accurate
and the non-Gaussian structure can be captured with accuracy by
MQG-DOmethod if perfect model is applied. In regime F = 8, also
perfect agreement can be seen from the MQG-DO result without
model error. Furthermore, by comparing the pdfs of forecast errors,
tight distributions with little degeneracy can be seen even with
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Fig. 10. Comparison of the statistics of the leading Fourier mode (û7 for F = 5 and û8 for F = 8) in regimes F = 5, 8 captured through MQG-DO, QG-DO, MQG, and EAKF
filters with imperfect model error F = 6. The first row shows the forecast pdfs of absolute values of the modes captured by different methods compared with the truth from
Monte-Carlo simulations in black dashed lines. The second row is the pdfs for the forecast error û−

j,model − uj,truth captured with different filtering methods.
Fig. 11. Comparison of principal mode statistics achieved through imperfect model with model error (using F = 6) and perfect model without model error (using the true
F ) in regimes F = 5, 8. The forecast pdfs for the leading mode (first row) and the forecast error pdfs (second row) as in Fig. 10 using MQG-DO filter are compared. Without
includingmodel errors, more accurate pdfs for themode are captured by the filter while tight distributions for the forecast errors are achieved in both caseswith andwithout
model errors.
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the case includingmodel error, showing the high prediction skill of
the MQG-DO combined filtering prediction system even with the
imperfectmodel forecasts using F = 6 both for theweakly chaotic,
F = 5, and strongly chaotic, F = 8, regimes.

5. Concluding discussion

In this paper, we offer extensive description and discussion for
the blended particle filters introduced in [19]. The basic idea for
this method is to capture non-Gaussian features in an adaptively
evolving low dimensional subspace through particles interacting
with evolvingGaussian statistics on the remaining phase space. It is
shown by simple examples that both the ideas about evolving low
dimensional subspaces and conditional Gaussian distribution in
the orthogonal part are essential for the effectiveness and accuracy
of filtering results. The performances of the filtering methods are
compared in various dynamical regimes with different statistical
features using the forty dimensional L-96 system with only a
five dimensional subspace for nonlinear particle filter. The effect
of model error for filter performance is also checked by adding
perturbations to the external forcing term of the system. Over
the various dynamical regimes with changing statistics and in
the presence of distinct statistical errors introduced by imperfect
models, the blended filtering methods demonstrate uniform high
skill in both capturing important non-Gaussian dynamical features
and achieving accurate filtering results in various regimes and
different kinds of observation data.

The blended filtering methods here also show potential to be
applied to more generalized realistic problems. Our focus above
is majorly about the development of the blended filtering scheme
and displaying the performance using simple models in the first
place. Still, to apply the methods to more realistic models, sev-
eral further difficulties need to be considered. As pointed out
by one of the reviewers, it is useful to check the filter perfor-
mance with varying DO subspace dimensionality s and develop
a judicious way to determine its value. This is related with the
development of proper reduced order uncertainty quantification
models. For example, the low-order models in [35] offer a promis-
ing way to run forecast system with efficiency. It is also useful to
check the blended filter responds to decreasing ensemble size in
the low dimensional subspace. In this paper, we use unnecessarily
large ensemble size to guarantee particle filter convergence and to
estimate the filter distributions. Effects with smaller particle num-
bers need to be checked for practical applications. Especially it is
another independent research topic to investigate proper resam-
pling strategies for particle filters with limited number of particles
to avoid particle collapse. These are the possible directions for fur-
ther developments of the methods.
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Appendix A. Exact solution for the 2 × 2 non-normal linear
system

The linear system that is tested in Section 2.2 is a two
dimensional system with variables x = (x, y) as a standard
Ornstein–Uhlenbeck process. The dynamics of x is a deterministic
process while stochasticity is only introduced by variable y so that

dx = Axdt + ΣdWt , (A.1)
with

A =


−a ϵ1
ϵ2 −b


, Σ =


0 0
0 σ


.

λ1,2 = −
1
2 (a + b) ±

1
2


(a − b)2 + 4ϵ1ϵ2

 1
2 are the eigen-

values of A. The non-normal features are characterized by the
non-commutability of A and A∗. If we calculate the eigenvectors of
A, v1 = (ϵ1, a + λ1)

T , v2 = (b + λ2, ϵ2)
T , they cannot be orthog-

onal to each other under the non-normal assumption ϵ1 ≫ 1, and
ϵ2 = 0. Also note that in this extreme regime, the angle between
the eigenvectors is sensitive to the variation of a but only one of
the eigenvectors v1 changes its orientation as a changes.

The exact analytic solution of the above system can be
expressed as
x
y


= eA(t−t0)


x0
y0


+

 t

t0
eA(t−s)ΣdWs. (A.2)

The solution is always a Gaussian distribution as long as the initial
value is Gaussian. Then only the first and second order moments
are required to get the full distribution of the solutions
x̄
ȳ


= eA(t−t0)


x0
y0


, (A.3)

R (t, t0) = eA(t−t0)R0eA
T (t−t0)

+

 t

t0
eA(t−s)


0 0
0 σ 2


eA

T (t−s)ds. (A.4)

By only considering the dynamics in the principal direction
as the reduced order method described in Section 2.1, take x =

u1e1 (t), with e1 (t) getting the direction with largest variance
through (A.4). To run the forecast model using QG-DO method,
the dynamics for the basis and stochastic coefficients need to
be calculated. For this two-dimensional system, the dynamical
basis e1 (t) can be determined by its angle θ with the axis, that
is, e1 (t) = (sin θ (t) , cos θ (t))T . Substitute e1 and u1 into the
standard DO equations for basis (15) and coefficients (14), we find

de1
dt

= Ae1 −

eT1Ae1


e1,

du1

dt
=

eT1Ae1


u1 + σ Ẇ · e1.

After some calculation, the equations for the DO direction θ and
stochastic coefficients u1 are achieved as

dθ
dt

= (b − a) sin θ cos θ + ϵ1 cos2 θ − ϵ2 sin2 θ, (A.5)

du1

dt
=

−a sin2 θ − b cos2 θ + (ϵ1 + ϵ2) sin θ cos θ


u1

+ σ cos θẆ . (A.6)

Then it is easy to reach the dynamics of the covariance Cu1u1 of the
stochastic coefficient
dCu1u1

dt
= −2


a sin2 θ + b cos2 θ

− (ϵ1 + ϵ2) sin θ cos θ) Cu1u1 (t) + σ 2 cos2 θ. (A.7)

Therefore all the equations required for the reduced ordermethods
are achievedherewith exact forms. The exact solutions of themean
and covariance matrix can be calculated at every time instant.
The DO direction θ can be achieved by integrating equation (A.5)
with high-order scheme. Then fixing θ at each time instant, the
dynamical stochastic equation of u1 is also easy to get through
Monte-Carlo simulation, with small integration step required to
guarantee the accuracy of the random process. The accuracy of
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Fig. B.12. Summary of statistics for the L-96 system: time series of the 40 state variables of L-96 system in various regimes (first row); energy spectra in Fourier space
(second row); the pdfs for the first two principal Fourier modes (third row); and the autocorrelation functions of the state variable (fourth row). Regimes for weakly chaotic
(F = 5, left), chaotic (F = 6, middle), and strongly chaotic (F = 8, right) dynamics are compared.
the approximation of u1 can also be checked by the solution of
Cu1u1 in (A.7). In this way, we can assume that no system error
is introduced in the resolved direction during the forecast step. A
clean output for the prior distribution can be achieved. This helps
us focus on the errors from the DO decomposition and the analysis
step.

Appendix B. Statistics of the L-96 system in various regimes

The major test model in this paper is the L-96 model which is
a 40-dimensional nonlinear chaotic dynamical system mimicking
the large-scale behavior of the mid-latitude atmosphere. It can be
formulated as
duj

dt
= uj−1


uj+1 − uj−2


− uj + F , j = 0, . . . , J − 1 (B.1)

with J = 40 and F the deterministic forcing parameter. We test
the filter performances in both weakly chaotic regime (F = 5) and
strongly chaotic regime (F = 8), and the imperfect model with
model error is in the chaotic regime (F = 6). The statistics for these
three cases are shown in Fig. B.12. Strong non-Gaussian statistics
can be seen from the weakly chaotic regime F = 5 while near
Gaussian distribution is shown in strongly chaotic regime F = 8,
and F = 6 shows the statistics in between.

To characterize the chaoticity in each regime, it is also useful
to introduce the pointwise energy at each grid point Ēp and the
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absolute decorrelation time Tcorr. Using ergodicity of the system,
the pointwise energy can be defined as the temporal mean of the
fluctuations along one trajectory

Ēp = lim
T→∞

1
T

J−1
j=0

1
J

 T0+T

T0


uj (t) − ū

2 dt,
with ū = limT→∞

1
T

 T0+T
T0

uj (t) dt the temporal mean. The
absolute decorrelation time can be defined as the integration of the
absolute value of the autocorrelation function

Tcorr =


∞

0



uj (t) − ū

 
uj (t + τ) − ū


t

uj (t) − ū
2

t

 dτ .

Appendix C. Solving the variational problem for the most
probable conditional distribution

Themaximum-entropy problem in Section 3.1 can be rephrased
as to find the distribution p∗

= p∗ (u2|u1), such that,

p∗ (u2|u1) = argmaxp∈C


p− (u1) S [p (u2|u1)] du1, (C.1)

under the conditions C:

p (u2|u1) ≥ 0,


p (u2|u1) du2 = 1, ∀u1, (C.2a)

ū−

2 =


u2p− (u1) p (u2|u1) du1du2, (C.2b)

R12 =

 
u1 − ū−

1


⊗

u2 − ū−

2


× p− (u1) p (u2|u1) du1du2, (C.2c)

R2 =

 
u2 − ū−

2


⊗

u2 − ū−

2


× p− (u1) p (u2|u1) du1du2. (C.2d)

The first constraint is to make sure that the optimization result
is still a density function and the following three constraints
guarantee the consistency with prior statistics in mean and
covariance.

Denoting p ≡ p (u2|u1), a standard variation about the entropy
function S as well as the constraints C gives

δS

δp
= − (1 + log p) p− (u1) ,

δū−

2

δp
= u2p− (u1) ,

δR12

δp
=

u1 − ū−

1


⊗

u2 − ū−

2


p− (u1) ,

δR2

δp
=

u2 − ū−

2


⊗

u2 − ū−

2


p− (u1) .

Using all these variations, introduce Lagrangian multipliers
µ0, µ1, µ2, µ3, then the optimal solution satisfies

δS

δp
= −µ0 − µ1

δū−

2

δp
− µ2

δR12

δp
− µ3

δR2

δp
.

Rearrange the equation with Lagrangian multipliers above, the
optimal solution can be rewritten in a compact form as

log p∗ (u2|u1) +


α1,α2

µα1,α2u
α1
1 uα2

2 + Cα (u1) = 0, (C.3)
with summation index {α1, α2} taking over 1 ≤ |α2| ≤ 2, |α1| +

|α2| ≤ 2.
The next step is to determine the Lagrangian multipliers in this

equation by substituting the optimal distribution found in (C.3)
back to the constraintsC. From (C.3), it is clear that the exponent of
p∗ is only a quadratic function ofu2. It infers that themost probable
distribution is simply Gaussian, thus only themean and covariance
matrix need to be determined. Write the Gaussian distribution
abstractly as

p∗ (u2|u1)

∝ exp


−
1
2

(u2 − m (u1))
T R−

2 (u2)
−1

(u2 − m (u1))


,

with m (u1) and R−

2 (u1) as the conditional mean and covariance
of the conditional distribution. Note again in (C.3), the square term
u2
2 only has constant coefficient, which means constant covariance

matrix R−

2 in the optimal density function p∗. Substitute p∗ into
(C.2b), a direct calculation gives

m (u1) = ū−

2 (u1) . (C.4)

Then define

R−

2 (u1) ≡

 
u2 − ū−

2 (u1)


⊗

u2 − ū−

2 (u1)
T p∗ (u2|u1) du2 = R−

2 , (C.5)

independent of the choice ofu1. Combining (C.5) and (C.2d), simple
calculations give

R2 + ū−

2 ⊗ ū−

2 =


u2 ⊗ u2p− (u1) p∗ (u2|u1) du2du1

= R−

2 +


ū−

2 (u1) ⊗ ū−

2 (u1) p− (u1) du1.

Therefore we get the form for the covariance matrix

R−

2 = R2 + ū−

2 ⊗ ū−

2 −


ū−

2 (u1) ⊗ ū−

2 (u1) p− (u1) du1

= R2 −


ū′

2 (u1) ⊗ ū′

2 (u1) p− (u1) du1,

= R2 −


j

ū′

2,j ⊗ ū′

2,jpj,−, (C.6)

with ū′

2 (u1) = ū−

2 (u1) − ⟨u2⟩. The last line of the above equation
uses the previous discrete particle representation p− (u1) =

j pj,−δ

u1 − u1,j


.
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